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The first SARS-CoV-2 vaccine(s) will likely be licensed based on neutralizing antibodies in Phase 2 trials,
but there are significant concerns about using antibody response in coronavirus infections as a sole met-
ric of protective immunity. Antibody response is often a poor marker of prior coronavirus infection, par-
ticularly in mild infections, and is shorter-lived than virus-reactive T-cells; strong antibody response
correlates with more severe clinical disease while T-cell response is correlated with less severe disease;
and antibody-dependent enhancement of pathology and clinical severity has been described. Indeed, it is
unclear whether antibody production is protective or pathogenic in coronavirus infections. Early data
with SARS-CoV-2 support these findings. Data from coronavirus infections in animals and humans
emphasize the generation of a high-quality T cell response in protective immunity. Yellow Fever and
smallpox vaccines are excellent benchmarks for primary immune response to viral vaccination and
induce long-lived virus-reactive CD8 T-cells, which are present and measurable within 1–4 months of
vaccination. Progress in laboratory markers for SARS-CoV2 has been made with identification of epitopes
on CD4 and CD8 T-cells in convalescent blood. These are much less dominated by spike protein than in
previous coronavirus infections. Although most vaccine candidates are focusing on spike protein as anti-
gen, natural infection by SARS-CoV-2 induces broad epitope coverage, cross-reactive with other betacoro-
nviruses. It will be important to understand the relation between breadth, functionality and durability of
T-cell responses and resulting protective immunity. It would be a public health and general trust-in-
medicine nightmare - including a boost to anti-vaccine forces - if immune protection wears off or new
disease patterns develop among the immunized. Data correlating clinical outcomes with laboratory
markers of cell-mediated immunity, not only with antibody response, after SARS-CoV-2 natural infection
and vaccines may prove critically valuable if protective immunity fades or if new patterns of disease
emerge.
� 2020 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Immunologic concerns about using antibody response as a sole metric of protective immunity in coronavirus infections . . . . . . . . . . . . . . . . . . 2
3. Prevalence and specificity of SARS-CoV-2 reactive T-cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
4. T-cell and antibody responses in relation to COVID-19 disease severity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
5. Benchmarks for T-cell immune response to viral vaccines: durability of virus-reactive T-cells as a metric of quality and longevity of immune

protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
6. Implications of T-cell findings in coronavirus infections for vaccine candidates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Declaration of Competing Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvacx.2020.100076&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jvacx.2020.100076
http://creativecommons.org/licenses/by/4.0/
mailto:march@berkeley.edu
https://doi.org/10.1016/j.jvacx.2020.100076
http://www.sciencedirect.com/science/journal/25901362
http://www.elsevier.com/locate/jvacx


2 M. Hellerstein / Vaccine: X 6 (2020) 100076
1. Introduction

The most definitive solution to the current world-wide public
health and economic crisis will be an effective vaccine against
SARS-CoV-2 (COVID-19). But due to the urgency of this moment,
the first SARS-CoV-2 vaccine(s) will likely be licensed based on lab-
oratory evidence of neutralizing antibodies in earlier (Phase 2) tri-
als, prior to Phase 3 efficacy and safety trials.
2. Immunologic concerns about using antibody response as a
sole metric of protective immunity in coronavirus infections

Both humoral immunity and cell mediated immunity, particu-
larly from CD8 T-cells, play key roles in vaccine-induced protective
immunity against intracellular infections like viruses [1]. For coro-
navirus infections including SARS-Cov-2, the literature is striking
on this topic and raises important concerns.

1. Antibody response is not a great marker of coronavirus infec-
tion. T-cell responses have been better markers than antibody
responses after natural coronavirus infection [2–10]. In severe
acute respiratory syndrome (SARS), only 50% of survivors had
detectable antibodies at 3 years and none had antibodies or
B-cell responses to SARS-CoV-1 at 6 years, while virus-specific
T-cells remain at 6–17 years [2–4,8,9]. Antibody response in Mid-
dle East respiratory syndrome (MERS) is low or absent in mild dis-
ease [5]. Experimental infection with a common cold coronavirus
in humans resulted in antibodies that died away within 1 year
[6]. Early data in SARS-CoV-2 infection suggest short-lived, less
robust or absent antibody response in mild clinical disease, with
40% of asymptomatic patients being seronegative for anti-spike
IgG ~12 weeks after virologic diagnosis and a 70% mean reduction
from initial IgG levels [7,10].

2. Strong antibody response correlates with more severe clinical
disease while strong T-cell response is correlated with less severe
disease. MERS survivors with higher antibody levels had experi-
enced longer ICU stays and required more ventilator support com-
pared to subjects with no detectable antibodies [11], while higher
virus-specific T-cell counts were observed with no detectable anti-
bodies in recovered patients who had less severe disease. The
authors [11] proposed that T-cells clear virus rapidly, which
reduces disease severity, exposure to virus and the strength of
antibody response. Higher IgG levels against spike protein during
acute infection were observed in SARS patients who subsequently
died, associated with worse clinical lung injury and pro-
inflammatory macrophages, compared to SARS patients who went
on to recover [12] In COVID-19 patients, total T cells counts are
markedly lower in most patients compared to healthy controls
and low CD8 T-cell counts (<165/mcl) are a predictor of higher risk
for death [13,14]. Antibody response is higher in severe disease
than in milder disease [15] and an abrupt elimination of virus is
not observed after the appearance of antibodies [16].

3. Antibodies can worsen disease (antibody-dependent
enhancement) in coronavirus infection in animals and possibly
humans. Feline infectious peritonitis is a coronavirus disease.
Severity is worsened by vaccination or passive immunization with
serum from cats containing high antibody titers prior to viral infec-
tion [17]. SARS-CoV-1 virus causes hepatitis in ferrets only in pre-
viously vaccinated animals [18]. In macaques, administering
immunoglobulin against spike protein worsened subsequent
SARS-CoV-1-induced lung damage, induced inflammatory cytoki-
nes and reduced wound healing [12]. These findings parallel den-
gue hemorrhagic fever in humans, where initial infection and
antibody response followed by a second infectious episode is
required for serious hemorrhagic disease. Subneutralizing antibod-
ies can promote viral entry into cells, including entry into and acti-
vation of macrophages and can occur through low-affinity
antibodies, cross-reactive antibodies to different strains, or subop-
timal titers of neutralizing antibodies. Vaccine trials for feline
infectious peritonitis and dengue had to be halted because of dis-
ease enhancement. It has to be considered that antibodies alone
might worsen coronavirus disease severity. Emerging data in
COVID-19 patients support this concern. High serum IgG levels
against SARS-CoV-2 are associated with more serious disease
[19,20]. As Cao wrote [19], ‘‘significant antibody production is
observed; however, whether this is protective or pathogenic
remains to be determined.”

T-cells might also amplify tissue damage in lung and heart in
established coronavirus infection or after vaccination, due to cyto-
kine excess or an eosinophilic proinflammatory Th2 response of
CD4 T-cells [21]. Although eosinophilic Th2 lung damage was
reported in mice from viral challenge after a SARS-CoV-1 vaccine
[22], data in COVID-19 patients do not show a Th2 cytokine profile
[23,24]. In mouse models of SARS, virus-specific T-cells are neces-
sary and sufficient for protection against disease [25–27].

Several authors have come to the conclusion that a coronavirus
vaccine should optimally induce virus-specific T-cells, not just anti-
bodies. Zhao [11] wrote, ‘‘future vaccines against emerging coron-
aviruses should emphasize the generation of a memory CD8 T cell
response for optimal protection” and Liu [12] concluded ‘‘in addition
to a strong anti-SARS-CoV antibody response, an optimal memory
CD8 T cell response will be an important goal in vaccine design”.
3. Prevalence and specificity of SARS-CoV-2 reactive T-cells

Recent publications [23,28–32] identifying epitopes on CD4 and
CD8 T-cells against SARS-CoV-2 in convalescent blood after natural
infection represent a key step toward understanding the role of
adaptive T-cell responses in COVID-19 protective immunity. Sette
and Crotty’s laboratories [23] reported that CD4 T-cell responses
are less dominated by spike protein epitopes than in previous coro-
navirus infections. Spike accounted for 27% of total responsive CD4
T-cells, with membrane (M) and nucleocapsid (N) proteins
accounting for 27% and 11%, respectively. In comparison, spike pro-
tein accounted for ~2/3 of reactive CD4 T-cells after previous coro-
navirus infections in humans [23], with one study [33] reporting
no M or N CD4 response in recovered SARS-CoV-1 patients.

The results were even more striking for CD8 T-cells. Spike-
reactive CD8 T-cells comprised only 26% and M 22% of the total
CD8 responsive cells, while nsp6, ORF3a, and N comprised ~50%.
This is very different from prior coronavirus infections, where
spike generally contributed ~50% and N comprised 36%, although
Zhao et al [11] showed broad responses to spike, N and M in MERS
survivors.

Other studies have confirmed the breadth of CD4 and CD8 T-cell
responses in COVID-19 convalescent patients. M- and N-reactive
cells [10,30,31] are equal to or more prevalent than spike-
reactive CD8 and CD4 T-cells.

These findings carry a potentially important message for SARS-
CoV-2 vaccines. Most current vaccine candidates are focusing on
spike protein as the immunizing antigen, but natural infection
induces broad epitope coverage in T-cells. It will be essential to
understand the relation between breadth, durability and quality
of T-cell responses and resulting protective immunity with SARS-
CoV-2 vaccines and natural infection.
4. T-cell and antibody responses in relation to COVID-19 disease
severity

T-cell and antibody responses correlate with severity of COVID-
19 clinical disease. Recovered patients with mild disease had more



Fig. 1. Long lifespan and mitotic quiescence of YFV-specific CD8 T-cells after
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prevalent M- and N- than spike-responsive CD8 T-cells and more
CD8 than CD4 virus-specific T-cells [30], compared to patients with
severe disease. Patients with milder disease [32] also show greater
clonal expansion and less active proliferation in CD8 T-cells in
bronchial fluid as well as lower serum cytokine levels, compared
to patients with severe disease. COVID-19 patients with serious ill-
ness or who died had higher expression of the programmed cell
death 1 receptor in T-cells, consistent with T-cell exhaustion
[14]. These findings suggest that the adaptive CD8 T-cell immune
response in general and broad T-cell specificity in particular confer
protective rather than pathologic effects. Peng et al. [30] concluded
that ‘‘the identification of T cell specificity and functionality asso-
ciated with milder disease highlights the potential importance of
including non-spike proteins within future COVID-19 vaccine
design.”
vaccination (heavy water labeling shown in blue) (from [36]). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)
5. Benchmarks for T-cell immune response to viral vaccines:

durability of virus-reactive T-cells as a metric of quality and
longevity of immune protection

We are fortunate to have in Yellow Fever (YF) and smallpox vac-
cines excellent benchmarks for primary immune response to viral
vaccination. These vaccines induce remarkably effective and long-
lived immune protection and share common features for cellular
immunity: generation of CD8 T-cells with broad specificity, high
magnitude, polyfunctionality, high proliferative potential and
long-term persistence [1]. This CD8 T-cell response pattern pro-
vides us with criteria for evaluating long-term, ‘‘high quality” pro-
tective immunity in vaccine trials or after natural infection.

In this context, recent data on the durability and cross-
reactivity of SARS-CoV-2 responsive T-cells in exposed and unex-
posed subjects may have important clinical implications. LeBert
et al. [28] reported remarkable results about T-cells that react to
the coronavirus structural protein N in a Singapore population.
Prevalence of reactive T-cells to SARS-CoV-2 N in was 100% in
COVID-19 recovered patients (36/36 patients) and included cover-
age of multiple regions of the N protein. Moreover, 23/23 patients
studied 17 years after recovery from SARS-CoV-1 infection still had
reactive T-cells to SARS-CoV-1 N. Importantly, these cells also
reacted to SARS-CoV-2 N. Finally, ~50% (19/37) of subjects who
were never clinically exposed to either SARS-CoV-1 or �2 infection
exhibited SARS-CoV-2 N-reactive T-cells.

These results in unexposed humans for N-reactive T-cells are
supported by findings for spike-reactive T-cells [29]. T-cells that
react to SARS-CoV-2 spike protein were present in 34% of seroneg-
ative, clinically unexposed healthy controls in a German cohort.
COVID-19 recovered patients in this population showed 83% preva-
lence of SARS-CoV-2 spike-reactive T-cells at higher levels than in
unexposed subjects. An intriguing finding was that the COVID-19
recovered patients’ T-cells covered epitopes broadly spaced across
the spike protein, whereas the epitopes covered in control subjects
were mostly against the C-terminal region, which has greater
homology to spike proteins in betacoronviruses that cause the
common cold. Prevalence of T-cells that are reactive to SARS-
CoV-2 proteins has also been reported in unexposed subjects in
studies from the United States [23], Sweden [10] and the Nether-
lands [24], although not in studies from Wuhan China [34] or the
United Kingdom [35].

Taken together, these findings tell an important and potentially
promising story. After SARS-CoV-1 or �2 infection, T-cells reactive
to coronavirus proteins are universally observed, persist for many
years and exhibit cross-reactivity between the two viruses. More-
over, SARS-CoV-2 reactive T-cells may often be induced by mild
betacoronavirus infections that cause common colds. The finding
of SARS-CoV-2-responding T-cells in unexposed subjects has now
been reported in several geographic locations and, if it holds up
to further study, might explain some of the variability of clinical
outcomes for COVID-19. This observation also suggests potentially
testable protective strategies for COVID-19 prevention through
exposure to betacoronavirus common colds (the original vaccine
of Jenner against smallpox, of course, was induced by intentional
natural infection with a zoonotic virus that caused mild symptoms
in humans).

The apparent durability of virus-specific T-cells against SARS-
CoV-1 [8,9] after natural infection is also a central feature of highly
effective viral vaccines - in particular, YF and smallpox vaccina-
tions [1,36]. To understand the basis of long-lived, high quality
protective immunity following viral vaccination, we [36] recently
characterized the lifespan and differentiation of YF virus (YFV)-
specific CD8 T-cells (Fig. 1) after vaccination and in vivo labeling
[37]. Long inter-mitotic interval was an early feature of YFV-
specific CD8 T-cells generated. Long lifespan allowed differentia-
tion from effector cells that proliferated during the initial viral
exposure to a unique, stem-like memory T-cell population. These
mitotically quiescent YFV-reactive cells maintained an epigenetic
fingerprint of their effector history with open chromatin profiles
at effector genes even a decade after vaccination. Indeed, these
long-lived T-cells combine features of naïve and effector cells - sur-
face markers (CD45RA and CCR7) and lack of granzyme B expres-
sion (naïve cell characteristics), rapid proliferation in response to
viral antigens or cytokines (effector), and gene expression patterns
distinct from either type. Importantly, long life-span of virus-
specific T-cells was apparent within 1–4 months after vaccination
by monitoring the slow die-away of labeled YFV-reactive T-cells
(Fig. 1). It may therefore be possible to characterize very early after
vaccination the quality and the durability of induced T-cell
immune protection. As Flaxman and Ewer suggested [38], vaccine
developers could use T-cell measurement methods ‘‘to evaluate
vaccine-specific T-cells”.
6. Implications of T-cell findings in coronavirus infections for
vaccine candidates

T cells interact with humoral immunity in several ways that can
influence both protective immunity and tissue pathology. Knowl-
edge is advancing on how this plays out for natural coronavirus
infections (Fig. 2). Protective natural immunity to coronavirus
infections, including SARS-CoV-2, provides criteria for vaccine
evaluation. In particular, CD8 T-cells with broad specificity (not
just to spike protein) and long persistence, more than a robust anti-
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body response alone, may be a signature of successful protective
immunity against SARS-CoV-2 and SARS-CoV-1 infections.

A key early question for any candidate vaccine for COVID-19
will therefore be whether it induces durable, high quality T-cell
protective immunity. A theoretical advantage of mRNA vaccines,
for example, is that antigens are synthesized in the cell cytosol
where they can be processed and bound to MHC-class I molecules
on the cell surface for recognition by CD8 T-cells. But it is not
known whether the absence of SARS-CoV-2 antigens such as M
or N will mimic the functionality of T-cell responses from natural
infection or what the durability of induced T-cells will be. The
same uncertainties hold true for any spike protein based COVID-
19 vaccine.

Preliminary reports on humoral and T-cell responses have been
published for three SARS-CoV-2 vaccine candidates in humans
[34,35,39] and for candidates in non-human primates [40,41].
Two of the human vaccines involved adenovirus-vector delivery
of spike protein and one was a spike-based mRNA vaccine. All
reported induction of anti-spike antibodies and spike-reactive T-
cells over a 1–2 month follow-up period, but deeper characteriza-
tion of T-cell responses, including specificity, magnitude, polyfunc-
tionality, proliferative potential and long-term persistence, have
not been reported and remain key unknowns. The reports in
non-human primates involved an adenovirus vector-based [40]
and a DNA [41] vaccine expressing the SARS-CoV-2 spike protein.
Both induced anti-spike antibodies and spike-reactive T-cells after
2–4 weeks and protection against viral challenge at 6 weeks. Dura-
bility of the antibody response or durability and quality of the T-
cell response were not assessed.

Grifoni et al. [23] wrote about natural infection that ‘‘knowl-
edge of the T-cell responses to COVID-19 can guide selection of
appropriate immunological endpoints” for SARS-CoV2 vaccine tri-
als. In contrast to the H1N1 vaccine, which was developed and
licensed 5 months after the first U.S. case was identified in the
H1N1 flu outbreak in 2009, the situation is very different for
COVID-19 [42]. There was extensive experience with influenza
vaccine technology and vaccines made using well established plat-
forms were licensed under the rules for a strain change. There has
never been a coronavirus vaccine or an mRNA vaccine, and until
there is a definitive Phase 3 efficacy trial we will have to depend
on laboratory measurements and their correlations with clinical
outcomes.

It would be a public health and ‘‘trust-in-medicine” nightmare
with potential repercussions for years - including a boost to anti-
vaccine forces - if immune protection wears off or antibody-
dependant enhancement develops and we face recurrent threats
from COVID-19 among the immunized. Data correlating clinical
outcomes with laboratory markers of cell-mediated immunity,
not only with antibody responses, after vaccination or natural
infection with SARS-CoV-2 or other betacoronviruses may prove
critically valuable, particularly if protective immunity fades or
new patterns of disease emerge.
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